Inicio  

    HUMOR MATEMÁTICO                            

Teorema de Thales, interpretado por Les Luthiers

Esto es lo que dice el propio autor sobre la historia de esta obra: "Tenía 19 años y cursaba mi segundo año de Facultad, cuando una vez, frente a un intrincado enunciado de Análisis Matemático (esos descubiertos por sabios enemigos), pensé que lo recordaría con más facilidad si le acoplaba una melodía cantable. Así lo hice... ¡y resultó! Claro que aquella sólo fue una pequeña trampita mnemotécnica. Pensé entonces si no podía ponerle música a todo un problema matemático. A todo un teorema, digamos. Entonces fui a la biblioteca, desempolvé el Repetto, Linskens y Fesquet, ubiqué el Teorema de Thales, y le puse música. Al día siguiente les canté mi teorema a un grupito de locos lindos del coro de Ingeniería. Me lo festejaron. Así entré en Les Luthiers".

.

NARRADOR: Johann Sebastian Mastropiero dedicó su divertimento matemático, op. 48, el "Teorema de Thales", a la condesa Shortshot, con quien viviera un apasionado romance varias veces, en una carta en la que le dice: "Condesa, nuestro amor se rige por el Teorema de Thales: cuando estamos horizontales y paralelos, las transversales de la pasión nos atraviesan y nuestros segmentos correspondientes resultan maravillosamente proporcionales". El cuarteto vocal "Les frères luthiers" interpreta: "Teorema de Thales" op. 48, de Johann Sebastian Mastropiero. Son sus movimientos:

* Introducción
* Enunciazione in tempo de menuetto
* Hipotesis agitatta
* Tesis
* Desmostrazione, ma non troppo
* Finale presto con tutti

CORO:
Si tres o más paralelas, si tres o más parale-le-le-las
Si tres o más paralelas, si tres o más parale-le-le-las
Son cortadas por dos transversales
Son cortadas por dos transversales
Si tres o más parale-le-le-las
Son cortadas, son cortadas
Dos segmentos de una de estas, dos segmentos cualesquiera
Dos segmentos de una de estas son proporcionales
a los dos segmentos correspondientes de la otra.

Hipótesis
a paralela a b,
b paralela a c,
a paralela a b, paralela a c, paralela a d
OP es a PQ
MN es a NT
OP es a PQ como MN es a NT
a paralela a b,
b paralela a c
OP es a PQ como MN es a NT

  
La bisectriz yo trazaré, y a cuatro planos intersectaré
Una igualdad yo encontraré: OP+PQ es igual a ST
Usaré la hipotenusa
Ay no te compliques, nadie la usa
Trazaré, pues, un cateto
Yo no me meto, yo no me meto.
Triángulo, tetrágono, pentágono, hexágono,
heptágono, octógono, son todos polígonos
Seno, coseno, tangente y secante,
y la cosecante y la cotangente.
Thales, Thales de Mileto
Thales, Thales de Mileto.
Que es lo queríamos demostrar. 

 

OP / PQ = MN / NT

OP + PQ = ST

 

 

 

 

 cita y gráfico obtenidos en: http://www.cs.berkeley.edu/~chema/